Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
Menu
Open sidebar
Sampling strategies in dfe
sampling strategies in dfe
Commits
fa8c607c
Commit
fa8c607c
authored
Aug 17, 2021
by
linushof
Browse files
Organize output of MCMC loop
parent
8ddfdd35
Changes
2
Hide whitespace changes
Inline
Side-by-side
JAGS/cpt_trial_level.txt
View file @
fa8c607c
...
...
@@ -18,32 +18,22 @@ model
for (i in start:stop)
{
# value function
v.a.o1[i] <- pow(a_o1[i],alpha)
v.a.o2[i] <- pow(a_o2[i],alpha)
v.b.o1[i] <- pow(b_o1[i],alpha)
v.b.o2[i] <- pow(b_o2[i],alpha)
v.a.o1[i] <- pow(a_o1[i], alpha)
v.a.o2[i] <- pow(a_o2[i], alpha)
v.b.o1[i] <- pow(b_o1[i], alpha)
v.b.o2[i] <- pow(b_o2[i], alpha)
# weighting function
w.a.p2[i] <- (delta * (pow(a_p2_exp[i], gamma))) / (delta * (pow(a_p2_exp[i], gamma)) + pow(a_p1_exp[i], gamma))
w.a.p2[i] <- (delta * (pow(a_p2_exp[i],gamma))) / (delta * (pow(a_p2_exp[i],gamma)) + pow(a_p1_exp[i],gamma))
w.a.p1[i] <- 1-w.a.p2[i]
w.b.p1[i] <- (delta * (pow(b_p1[i],
gamma))) / (delta * (pow(b_p1[i],
gamma)) + pow(b_p2[i],
gamma))
w.b.p1[i] <- (delta * (pow(b_p1[i],gamma))) / (delta * (pow(b_p1[i],gamma)) + pow(b_p2[i],gamma))
w.b.p2[i] <- 1-w.b.p1[i]
# valuation
Vf.a[i] <- w.a.p1[i] * v.a.o1[i] + w.a.p2[i] * v.a.o2[i]
Vf.b[i] <- w.b.p1[i] * v.b.o1[i] + w.b.p2[i] * v.b.o2[i]
## retransform
Vf.a.re[i] = pow(Vf.a[i], (1/alpha))
Vf.b.re[i] = pow(Vf.b[i], (1/alpha))
# choice rule
binval[i] <- (1)/(1+exp((-1*rho)*(Vf.a.re[i]-Vf.b.re[i])))
choice[i] ~ dbern(binval[i])
}
...
...
R/cpt.R
View file @
fa8c607c
...
...
@@ -17,8 +17,7 @@ choices <- read_csv("data/choices/choices.csv", col_types = cols)
choices_cpt
<-
choices
%>%
filter
(
!
(
is.na
(
a_ev_exp
)
|
is.na
(
b_ev_exp
)))
%>%
# remove choices where prospects were not attended
mutate
(
choice_A
=
if_else
(
choice
==
"A"
,
1
,
0
),
# for logit choice rule
i
=
row_number
())
# assign trial numbers
mutate
(
choice_A
=
if_else
(
choice
==
"A"
,
1
,
0
))
# to apply logit choice rule
## prepare computation of CPT estimates for each distinct strategy-parameter combination
...
...
@@ -26,7 +25,8 @@ params_sim <- choices_cpt %>% distinct(strategy, s, boundary, a) # group trials
choices_grouped
<-
vector
(
"list"
,
nrow
(
params_sim
))
for
(
set
in
seq_len
(
nrow
(
params_sim
))){
choices_grouped
[[
set
]]
<-
choices_cpt
%>%
filter
(
strategy
==
theta
[[
set
,
"strategy"
]]
&
s
==
theta
[[
set
,
"s"
]]
&
boundary
==
theta
[[
set
,
"boundary"
]]
&
a
==
theta
[[
set
,
"a"
]])
filter
(
strategy
==
params_sim
[[
set
,
"strategy"
]]
&
s
==
params_sim
[[
set
,
"s"
]]
&
boundary
==
params_sim
[[
set
,
"boundary"
]]
&
a
==
params_sim
[[
set
,
"a"
]])
%>%
mutate
(
i
=
row_number
())
# assign trial numbers
}
estimates_cpt
<-
vector
(
"list"
,
nrow
(
params_sim
))
# allocate space for JAGS output
...
...
@@ -68,8 +68,9 @@ for(set in seq_len(nrow(params_sim))){
DIC
=
FALSE
,
jags.seed
=
8362
)
# to get posterior estimates, credibility intervals, and MCMC diagnostics
# get posterior estimates, credibility intervals, and MCMC diagnostics
summary
<-
MCMC_samples
$
BUGSoutput
$
summary
%>%
as_tibble
(
rownames
=
"parameter"
)
%>%
estimates_cpt
[[
set
]]
<-
expand_grid
(
set
,
summary
)
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment