Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
Menu
Open sidebar
Sampling strategies in dfe
sampling strategies in dfe
Commits
9f0a6753
Commit
9f0a6753
authored
Aug 22, 2021
by
linushof
Browse files
Comments on prior and model specification
parent
fa8c607c
Changes
1
Hide whitespace changes
Inline
Side-by-side
JAGS/cpt_trial_level.txt
View file @
9f0a6753
model
model
{
{
# define priors
# specify priors for CPT parameters
## standard-normal priors on probit-transformed CPT parameters correspond to uniform priors on the original scale (cf. Rouder & Lu, 2005)
alpha.phi ~ dnorm(0,1)
alpha.phi ~ dnorm(0,1)
gamma.phi ~ dnorm(0,1)
gamma.phi ~ dnorm(0,1)
delta.phi ~ dnorm(0,1)
delta.phi ~ dnorm(0,1)
rho.lmu ~ dunif(-2.3, 1.61)
rho.lmu ~ dunif(-2.3, 1.61)
## to extend the range of the original scale [0,1], use linear link function (cf. Scheibehenne & Pachur, 2015)
alpha <- 2*phi(alpha.phi)
alpha <- 2*phi(alpha.phi)
gamma <- 2*phi(gamma.phi)
gamma <- 2*phi(gamma.phi)
delta <- 5*phi(delta.phi)
delta <- 5*phi(delta.phi)
rho <- exp(rho.lmu)
rho <- exp(rho.lmu)
#
Trial loop
#
define CPT model
for (i in start:stop)
for (i in start:stop)
{
{
# value function
v.a.o1[i] <- pow(a_o1[i],alpha)
v.a.o1[i] <- pow(a_o1[i],alpha)
v.a.o2[i] <- pow(a_o2[i],alpha)
v.a.o2[i] <- pow(a_o2[i],alpha)
v.b.o1[i] <- pow(b_o1[i],alpha)
v.b.o1[i] <- pow(b_o1[i],alpha)
v.b.o2[i] <- pow(b_o2[i],alpha)
v.b.o2[i] <- pow(b_o2[i],alpha)
# weighting function (cf. Prelec, 1998)
w.a.p2[i] <- (delta * (pow(a_p2_exp[i],gamma))) / (delta * (pow(a_p2_exp[i],gamma)) + pow(a_p1_exp[i],gamma))
w.a.p2[i] <- (delta * (pow(a_p2_exp[i],gamma))) / (delta * (pow(a_p2_exp[i],gamma)) + pow(a_p1_exp[i],gamma))
w.a.p1[i] <- 1-w.a.p2[i]
w.a.p1[i] <- 1-w.a.p2[i]
w.b.p1[i] <- (delta * (pow(b_p1[i],gamma))) / (delta * (pow(b_p1[i],gamma)) + pow(b_p2[i],gamma))
w.b.p1[i] <- (delta * (pow(b_p1[i],gamma))) / (delta * (pow(b_p1[i],gamma)) + pow(b_p2[i],gamma))
...
@@ -31,8 +39,12 @@ model
...
@@ -31,8 +39,12 @@ model
Vf.a[i] <- w.a.p1[i] * v.a.o1[i] + w.a.p2[i] * v.a.o2[i]
Vf.a[i] <- w.a.p1[i] * v.a.o1[i] + w.a.p2[i] * v.a.o2[i]
Vf.b[i] <- w.b.p1[i] * v.b.o1[i] + w.b.p2[i] * v.b.o2[i]
Vf.b[i] <- w.b.p1[i] * v.b.o1[i] + w.b.p2[i] * v.b.o2[i]
Vf.a.re[i] = pow(Vf.a[i], (1/alpha))
# rescale subjective values to alleviate possible parameter intercorrelations (cf. Krefeld-Schwalb et al., 2021)
Vf.b.re[i] = pow(Vf.b[i], (1/alpha))
Vf.a.re[i] <- pow(Vf.a[i], (1/alpha))
Vf.b.re[i] <- pow(Vf.b[i], (1/alpha))
# stochastic choice rule
binval[i] <- (1)/(1+exp((-1*rho)*(Vf.a.re[i]-Vf.b.re[i])))
binval[i] <- (1)/(1+exp((-1*rho)*(Vf.a.re[i]-Vf.b.re[i])))
choice[i] ~ dbern(binval[i])
choice[i] ~ dbern(binval[i])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment